Which of the following is equivalent to $\cfrac{2{x^3} - 2x^2 + 5}{x-{2}}$ ?
A. $2x^2 + {2}x + {4} + \cfrac{13}{x-{2}}$
B. $2x^2 + {2}x + \cfrac{9}{x-{2}}$
C. $2x^2 - {6}x - {12} - \cfrac{29}{x-{2}}$
D. $2x^2 - {6}x - \cfrac{17}{x-{2}}$
E. $2x^2 - {6}x + {12} + \cfrac{17}{x-{2}}$
No Solution StepsA. $2x^2 + {2}x + {4} + \cfrac{13}{x-{2}}$
B. $2x^2 + {2}x + \cfrac{9}{x-{2}}$
C. $2x^2 - {6}x - {12} - \cfrac{29}{x-{2}}$
D. $2x^2 - {6}x - \cfrac{17}{x-{2}}$
E. $2x^2 - {6}x + {12} + \cfrac{17}{x-{2}}$