Which of the following is equivalent to $\cfrac{3{x^3} - 5x^2 + 5}{x-{5}}$ ?
A. $3x^2 + {10}x + {50} + \cfrac{255}{x-{5}}$
B. $3x^2 + {10}x + \cfrac{55}{x-{5}}$
C. $3x^2 - {20}x - {100} - \cfrac{505}{x-{5}}$
D. $3x^2 - {20}x - \cfrac{105}{x-{5}}$
E. $3x^2 - {20}x + {100} + \cfrac{105}{x-{5}}$
No Solution StepsA. $3x^2 + {10}x + {50} + \cfrac{255}{x-{5}}$
B. $3x^2 + {10}x + \cfrac{55}{x-{5}}$
C. $3x^2 - {20}x - {100} - \cfrac{505}{x-{5}}$
D. $3x^2 - {20}x - \cfrac{105}{x-{5}}$
E. $3x^2 - {20}x + {100} + \cfrac{105}{x-{5}}$